Adhim, Rizki Nurfajri (2015) Multi objektif optimal power flow untuk minimisasi biaya dan rugi-rugi jaringan menggunakan gravitational search algorithm. Undergraduate thesis, Institut Teknology Sepuluh Nopember.
Preview |
Text
2210100169-Undergraduate_Thesis.pdf Download (1MB) | Preview |
Abstract
Pengaturan optimal pembangkit telah menjadi hal yang sangat
penting dalam studi sistem tenaga modern. Banyak sekali metode dan
algoritma yang telah diciptakan untuk memungkinkan pengaturan
pembangkitan menjadi optimal. Tujuan dari algoritma dan metode yang
dibuat adalah untuk memaksimalkan hasil optimasi baik dari segi biaya,
rugi-rugi jaringan maupun mengurangi emisi yang dihasilkan. Dalam
pengembangan algoritma dan metode yang telah dibuat diantaranya
banyak yang menggunakan algoritma berbasis populasi, seperti Particle
Swarm Optimization (PSO) dan Gravitational Search Algorithm (GSA).
Keduanya sama-sama memanfaatkan sifat partikel yang
cenderung membuat kelompok-kelompok berdasarkan solusi terbaiknya.
Namun terdapat perbedaan sifat pada bagaimana partikel-partikel saling
mendekati. Pada metode Gravitational Search Algorithm digunakan teori
hukum Newton tentang gravitasi, dimana setiap partikel memiliki
gravitasinya masing-masing berdasarkan massa dan jaraknya dengan
partikel lain.
============================================================================================
Optimization becomes an important thing in modern power
system. There are several methods and algorithm has created to enable
very optimal generation. Many algorithm and methods has created for
many purposes, such maximize optimization result with optimizing
generation cost (economic dispatch), system losses, and minimize the
emission of the generator for environmental purpose. In research of the
methods and algorithm has made, there were many of them using
population – based algorithm, such as Particle Swarm Optimization
(PSO) and Gravitational Search Algorithm (GSA).
Both has several similarity in its characteristics, made of many
particle nature that makes several groups to obtain the best result. But
there are several differences in particles nature about how they
approaching each other. In Gravitational Search Algorithm method, its
use Newton’s law of gravity, that each particles has its own gravity based
on its mass and distance with other particles.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSE 621.319 Adh m |
Uncontrolled Keywords: | Multi Objective Optimal Power Flow; Economic Dispatch; Losses; Gravitational Search Algorithm |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1010 Electric power system stability. Electric filters, Passive. |
Divisions: | Faculty of Industrial Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | - Taufiq Rahmanu |
Date Deposited: | 11 Oct 2019 07:17 |
Last Modified: | 11 Oct 2019 07:17 |
URI: | http://repository.its.ac.id/id/eprint/71127 |
Actions (login required)
View Item |