Fahmi, Muhammad Farid (2016) Sistem Informasi Geografis (SIG) Sebaran Daerah Aliran Sungai (DAS) Mengunakan Segmentasi Berbasis Algoritma K-Modes Clustering Dan Davies-Bouldin Index - Geographic Information System (GIS) Distribution Of Watershed Using Segmentation Based Of K-Modes Clustering Algorithm And Davies-Bouldin Index. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
2214206704-Master thesis.pdf - Published Version Download (2MB) | Preview |
Abstract
Tingkat keberhasilan rehabilitasi DAS saat ini masih belum maksimal, salah
satu penyebabnya adalah keterbatasan informasi tentang kondisi DAS. Dari
permasalahan di atas, diperlukan suatu penelitian yang dapat memberikan acuan atau
alternatif lain dalam menentukan DAS prioritas untuk direhabilitasi, salah satunya
melalui data mining. Dalam penelitian ini DAS akan dikelompokkan menggunakan
algoritma K-modes clustering berdasarkan parameter karakteristiknya. hasil
pengelompokan DAS dengan K-modes clustering kemudian dioptimalkan
menggunakan Davies Bouildin Index (DBI) untuk mendapatkan jumlah cluster
dengan tingkat kemiripan yang optimal dan dilakukan visualisasi dengan Sistem
Informasi Geografis untuk memeperoleh peta sebaran DAS. Dari uji coba pada DAS
Tondano didapatkan bahwa cluster nomor empat (4) adalah jumlah cluster yang
optimal dengan nilai DBI rata-rata 0,672778, atau 19,93%. Hasil clustering
menunjukkan bahwa DAS dalam cluster 3 dengan 332 DAS yang sebagian besar
tersebar di Minahasa Selatan (24,7%) adalah DAS kritis dibandingkan dengan
kelompok lainnya. hasil dari proses pengelompokan tidak jauh berbeda atau 90,64%
sama jika dibandingkan dengan perhitungan DAS secara manual, yang dapat
digunakan sebagai acuan stau alternatif lain dalam perencanaan rehabilitasi DAS.
========================================================================================================================
The watershed rehabilitation success rate have not been up, is the result of
policies in watershed rehabilitation strategies that are less precise. From the above
problems, we need a study that can provide a reference or any other alternative in
determining priority watersheds to be rehabilitated, one through data mining. This
paper uses a case study of Watershed data which are grouped using K-modes
clustering algorithm based on its characteristics parameters. Watershed groupped
using K-modes clustering then optimized using Davies- Bouildin Index (DBI) to
get the number of clusters with the optimal level of similarity and visualized using
GIS to obtain distribution maps. From trial on the Watershed of Tondano It was
known that the cluster number four (4) is the optimal cluster number with an
average DBI value of 0.672778, or 19.93%. The clustering results show that the
wateshed in cluster 3 with 332 watershed which mostly scattered in the South
Minahasa (24.7%) is a critical watershed compared to other clusters. the result of
the clustering process is not much different or 90.64% similar when compared to
the calculation of the watershed manually, that can be used as alternative to other
reference in planning the rehabilitation of the watershed.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTE 006.312 Fah s |
Uncontrolled Keywords: | Data Mining, Clustering, K-Modes,Davies-Bouldin Index, SIG,DAS, Data Mining, Clustering, K-Modes,Davies-Bouldin Index, GIS, watershed |
Subjects: | Q Science > QA Mathematics > QA76.9.D343 Data mining. Querying (Computer science) |
Divisions: | Faculty of Industrial Technology > Electrical Engineering |
Depositing User: | ansi aflacha |
Date Deposited: | 17 Dec 2019 04:56 |
Last Modified: | 17 Dec 2019 04:56 |
URI: | http://repository.its.ac.id/id/eprint/72396 |
Actions (login required)
View Item |