Pengelompokan Aksesi Jeruk Persilangan Berdasarkan Karakter Kuantitatif Dan Kualitatif Menggunakan Fuzzy C-Means Dan K-Modes

Saputra, Candra Widhi (2016) Pengelompokan Aksesi Jeruk Persilangan Berdasarkan Karakter Kuantitatif Dan Kualitatif Menggunakan Fuzzy C-Means Dan K-Modes. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1314105029-Undergraduate_Thesis.pdf]
Preview
Text
1314105029-Undergraduate_Thesis.pdf - Accepted Version

Download (2MB) | Preview
[thumbnail of 1314105029-Paper.pdf]
Preview
Text
1314105029-Paper.pdf - Accepted Version

Download (174kB) | Preview
[thumbnail of 1314105029-Presentation.pdf]
Preview
Text
1314105029-Presentation.pdf - Presentation

Download (4MB) | Preview

Abstract

Balitjestro telah memulai program pemuliaan jeruk sejak tahun 2006
dengan cara persilangan antar 2 jenis jeruk. Dalam 1 proses
persilangan dapat menghasilkan ±150 varietas tanaman baru.
Banyaknya varietas baru persilangan di dapat dari biji buah
persilangan antara jeruk jenis Siam Pontianak dan jeruk jenis Soe.
Untuk dapat membedakan varietas baru tersebut, maka varietas yang
baru muncul tersebut nantinya akan diberi nama. Setelah didapatkan
suatu varietas – varietas baru selanjutnya dilakukan proses seleksi.
Proses seleksi penting untuk memilah antara varietas biasa dan varietas
unggul. Seleksi salah satunya dapat menggunakan karakterisasi
tanaman jeruk tersebut. Terdapat 2 jenis pengamatan yang dihasilkan
dari karakterisasi tanaman jeruk ini, yaitu pengamatan kuantitatif dan
kualitatif. Penelitian ini dilakukan untuk mengetahui pengelompokan
aksesi jeruk persilangan dengan metode Fuzzy C-Means, K-Modes, dan
Ensemble Cluster. Data yang digunakan adalah data sekunder yang
diperoleh dari pengamatan di Balai Penelitian Jeruk dan Buah
Subtropika (BALITJESTRO) dengan 34 data aksesi yang bertipe
kuantitatif dan kualitatif. Hasil penelitian menunjukkan bahwa Fuzzy CMeans menghasilkan 3 kelompok optimum, K-Modes menghasilkan 4
kelompok dengan akurasi 100%, dan ensemble cluster akan dibuat 4
kelompok dengan akurasi 97%. Metode fuzzy c-means cluster yang
digunakan pada karakter kuantitatif cukup untuk mengelompokkan
kedua tipe data karena memiliki nilai icdrate 0,27 dan akurasi 97%
====================================================================================================
Balitjestro has started citrus breeding program since 2006 by way of a
cross between two types of oranges. In one cross process can produce ±
150 new plants varieties. The number of new hybrid varieties results
obtained the fruit seeds from hybrids types of Siam Pontianak oranges
and Soe oranges. To be able to distinguish the new varieties, the
varieties are emerging that will later be named. Having obtained a new
varietys of the selection process is then performed. The selection process
is important for distinguishing between ordinary varieties and superior
varieties. Selection of one of them can use the characterization of the
citrus plants. There are two types of observations resulting from the
characterization of citrus plants, namely quantitative and qualitative
observations. This study was conducted to determine the grouping
accession orange hybrid with Fuzzy C-Means, K-Modes, and Cluster
Ensemble. The data used is secondary data obtained from observations
at the Research Institute for Citrus and Subtropical Fruit (Balitjestro)
with 34 accessions of the type of data quantitatively and qualitatively.
The results showed that the Fuzzy C-Means optimum result in 3 groups,
K-Modes resulted in 4 groups with 100% accuracy, and the ensemble
cluster will be made 4 groups with an accuracy of 97%. Fuzzy c-means
cluster used in quantitative characters enough to classify both types of
data because it has value and error icdrate 0.27 and accuracy 97%

Item Type: Thesis (Undergraduate)
Additional Information: RSSt 519.53 Sap p 3100016066200
Uncontrolled Keywords: Persilangan. Fuzzy C-Means, K-Modes, Ensemble Cluster, Balitjestro, Hybrid
Subjects: Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics)
Divisions: Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: - Davi Wah
Date Deposited: 25 Feb 2020 07:41
Last Modified: 25 Feb 2020 07:41
URI: http://repository.its.ac.id/id/eprint/75121

Actions (login required)

View Item View Item