Abdullah, Mohammad Naufal (2020) Model Survival Spasial Dengan Frailty Conditionally Autoregressive (CAR) Non-Gaussian Pada Kasus Demam Berdarah Di RSUD Dr. Soetomo Surabaya. Other thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
06211640000018-Undergraduate_Thesis.pdf Download (9MB) | Preview |
Abstract
Demam Berdarah Dengue (DBD) merupakan penyakit yang disebabkan oleh virus Dengue yang ditularkan melalui gigitan nyamuk Aedes aegypti dan Aedes albopictus. Indonesia memiliki kasus DBD tertinggi di Asia Tenggara. Jawa Timur merupakan provinsi dengan jumlah kasus DBD tertinggi kedua pada 2017 dan 2018. Salah satu analisis statistika yang digunakan untuk mengetahui ketahanan hidup adalah analisis survival, sehingga analisis tersebut digunakan untuk menganalisis karakteristik pasien yang mempengaruhi lama rawat inap pasien DBD di RSUD Dr. Soetomo dengan memperhatikan faktor spasial (tempat tinggal pasien). Penambahan efek random spasial conditionally autoregressive (CAR) non-Gaussian dilakukan untuk menghindari bias estimasi. Parameter model diestimasi menggunakan Bayesian. Hasil penelitian menunjukkan bahwa kasus DBD terbanyak di Surabaya Timur terjadi di Kecamatan Tambaksari dan Gubeng. Berdasarkan indeks Moran’s I, terdapat dependensi spasial antar kecamatan di Surabaya Timur. Model survival parametrik yang digunakan mengikuti pola distribusi Weibull 2 dan 3 parameter. Model terbaik dengan WAIC terkecil adalah model survival Weibull 2 parameter dengan CAR Laplace dan 7 faktor yang berpengaruh signifikan adalah usia pasien, pendidikan terakhir pasien (SMA), pekerjaan pasien (tidak bekerja), diagnosis masuk rumah sakit (II), suhu tubuh pasien, jumlah denyut nadi per menit, dan kadar sel darah putih. Efek random spasial menunjukkan adanya hubungan spasial yang relatif kecil.
====================================================================================
Dengue Hemorrhaghic Fever (DHF) is a disease caused by Dengue virus transmitted through the bite of Aedes aegypti and Aedes albopictus mosquitoes. Indonesia has the highest case of DHF in Southeast Asian. East Java is a province with the second highest number of DHF cases in 2017 and 2018. One of the statistical analysis used to determine survival is the analysis of survival, so the analysis is used to analyze the characteristics of patients that influence length duration of DHF patients care in RSUD Dr. Soetomo by considering the spatial factor (where the patient lives). The addition of non-Gaussian conditionally Autoregressive (CAR) frailty is used to avoid biased estimation. Model parameters are estimated using Bayesian method. The results of research showed that the most cases of DHF in East Surabaya occurred in the sub-district of Tambaksari and Gubeng. Based on Moran’s I index, there are spatial dependencies between sub-districts in East Surabaya. Parametric survival model that used following pattern Weibull 2 and 3 parameters distribution. The best model with the smallest WAIC is the survival model of Weibull 2 parameters with CAR Laplace and 7 significant factors are the age of patient, patient’s last education (Senior High School), patient’s occupations (not working), the Diagnosis of hospital admission (II), patient’s body temperature, the number of pulses per minute, and white blood cell rate. Random spatial effects indicate a relatively small spatial relationship.
Item Type: | Thesis (Other) |
---|---|
Additional Information: | RSSt 519.542 Abd m-1 • Abdullah, Mohammad Naufal |
Uncontrolled Keywords: | Bayesian, CAR (Conditionally Autoregressive), Dengue Hemorrhagic Fever, Non-Gaussian, Survival Spatial, Bayesian, CAR (Conditionally Autoregressive), Demam Berdarah Dengue, Non-Gaussian, Survival Spasial |
Subjects: | R Medicine > R Medicine (General) > R853.S7 Survival analysis (Biometry) |
Divisions: | Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Mohammad Naufal Abdullah |
Date Deposited: | 26 Aug 2020 03:21 |
Last Modified: | 25 Dec 2023 13:30 |
URI: | http://repository.its.ac.id/id/eprint/81110 |
Actions (login required)
View Item |