Temu Kembali Informasi Menggunakan Knowledge Based Intelligent Agent Berbasis Big Data Pada Media Sosial

Arifin, Firman (2020) Temu Kembali Informasi Menggunakan Knowledge Based Intelligent Agent Berbasis Big Data Pada Media Sosial. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 07111160010013-Dissertation.pdf]
Preview
Text
07111160010013-Dissertation.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Memahami kepentingan dan opini publik adalah pekerjaan penting yang diperlukan dalam persaingan politik yang sangat ketat. Memanfaatkan analitik big data dari media sosial memberikan sumber informasi penting yang dapat digunakan, dikelola, dan bahkan dilibatkan oleh kandidat dalam agenda kampanye politik yang ditargetkan. Salah satu sumber dalam data besar adalah interaksi media sosial. Media sosial memberdayakan publik untuk berpartisipasi secara proaktif dalam kegiatan kampanye. Salah satunya membahas tren yang dikumpulkan dari analisis data dari dua kelompok pesaing untuk Pemilu Indonesia pada tahun 2019. Ini melacak pola keterlibatan orang melalui analitik media sosial khususnya Twitter. Studi ini mengembangkan analisis menjadi model yang diusulkan berdasarkan tren dan pola mereka. Selain sumber data dari twiter, kami juga menggunakan aplikasi chatting whatsapp. Kami namakan asiten pribadi atau disingkat aspri saat versi 1. Sekarang kami update dan kami ganti nama menjadi Robot Pak RT. Melalui bot ini kami kumpulkan data-data dan kami olah sesuai kebutuhan. Salah satu diantaranya adalah statistik percakapan di grup-grup whatsapp serta keyword atau kata-kata penting yang sering dibahas. Sampai buku ini dibuat sudah ada 16.664 user dan 493 whatsapp grup aktif. Keaktifan pengguna whatsapp per hari di lima kelompok yang kami analisa, rata-rata 16.57% dengan rentang prosentase mulai dari 12.17% sampai 30.92%.
===================================================================================================================================
Understanding public interest and opinion are necessary tasks in high intense political competition. Utilizing big data analytics from social media provide an important source of information that candidates can utilize, manage and even engage them in targeted political campaigning agenda. One of the sources in big data is social media’s interactions. Social media empowers public to participate proactively in the campaigning activities. This paper examines trends gathered from data analytics of two contenders’ group for Indonesian Election in 2019. It tracks the recent patterns of people engagement via social media analytic specifically Twitter. The study developed the analysis into the proposed model based on their trends and patterns. The study revealed that political parties are building online social networks to enable them to engage with the public, disseminate ideas and information, gauge public opinion, monitor trends, and obtain immediate feedback. It provides a platform as a listening tool that can be used to capture information and conversations about parties or candidates, and analysis of the data to monitor trends in a candidate’s acceptability
Apart from data sources from twitters, we also use the WhatsApp application. We called it personal assistant or aspri at that time version 1. Now we update it and we change its name to Robot Pak RT. Through this robot we collect data and process it as needed. One of them is WhatsApp group statistics and important keywords or words that are often discussed. Until this book was written there were 16,664 users and 493 active WhatsApp groups. The activeness of
whatsapp users per day in the five groups that we analyzed, was on average 16.57% with a percentage ranging from 12.17% to 30.92%.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Big Data, Twitter, Whatsapp, Robot Pak RT, Data Analytics, Indonesia, Election
Subjects: T Technology > T Technology (General) > T58.5 Information technology. IT--Auditing
T Technology > T Technology (General) > T58.6 Management information systems
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20001-(S3) PhD Thesis
Depositing User: Firman Arifin
Date Deposited: 05 Mar 2021 03:18
Last Modified: 15 Sep 2024 01:33
URI: http://repository.its.ac.id/id/eprint/83520

Actions (login required)

View Item View Item