Optimalisasi Constant Power Generation Melalui Pengaturan Fuzzy Logic MPPT Pada Turbin Angin Yang Terkoneksi Grid

Pratama, Bintang (2021) Optimalisasi Constant Power Generation Melalui Pengaturan Fuzzy Logic MPPT Pada Turbin Angin Yang Terkoneksi Grid. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 07111740000009-undegraduate_thesis.pdf] Text
07111740000009-undegraduate_thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (1MB) | Request a copy

Abstract

Daya keluaran dari konversi energi angin bervariasi tergantung pada kecepatan angin. Karena karakteristik turbin angin nonlinear,maka dibutuhkan Maximum Power Point Tracking (MPPT) untuk mempertahankan maximum power output dari turbin angin dalam semua kondisi. Namun, dengan peningkatan daya terus menerus turbin angin yang terhubung ke jaringan, pada power system operators terdapat kendala, seperti kelebihan beban, tegangan berlebih, dan pengoperasian selama gangguan tegangan jaringan. Oleh karena itu, kondisi ini dapat dikontrol menggunakan Constant Power Generation (CPG) Cara untuk mencapai kontrol ini adalah dengan memodifikasi algoritma MPPT. Dalam hal algoritma, Constant Power Generation (CPG) menggunakan algoritma berbasis perturb dan observe (P&O-CPG). Kekurangan metode ini ialah saat steady state, nilai daya output berosilasi di sekitar titik puncak daya sehingga memiliki rugi-rugi yang cukup besar,digunakanlah metode baru yaitu Fuzzy Logic Controller (FLC) dimana dapat digunakan untuk menaikkan kemapuan dari MPPT.Pada tugas akhir ini akan dibahas mengenai optimalisasi Constant Power Generation (CPG) pada turbin angin yang terkoneksi grid dengan implementasi algortima Fuzzy Logic Controller (FLC). Tujuan kontrol CPG ini adalah untuk membatasi daya dan menghinfari overvoltage pada beban. Batasan daya yang diinjeksi menuju beban ditentukan dengan membatasi tegangan injeksi dimana batas beban dimana dengan besar +5% sehingga batas daya maksimum yang masuk ke beban adalah 231 V. Pada metode FLC tidak terjadi osilasi sehingga tidak menimbulkan rugi-rugi. Algoritma FLC memiliki efisiensi energi disaat terjadi perubahan kecepatan yaitu sebesar 98.9%.
========================================================================================================
The output power of the wind energy conversion varies depending on the wind speed. Due to the nonlinear characteristics of wind turbines, Maximum Power Point Tracking (MPPT) is needed to maintain the maximum power output of the wind turbine in all conditions. However, with the continuous increase in the power of wind turbines connected to the network, the power system operators have problems, such as overload, overvoltage, and operation during network voltage disturbances. Therefore, this condition can be controlled using Constant Power Generation (CPG). The way to achieve this control is by modifying the MPPT algorithm. Constant Power Generation (CPG) uses a perturb and observe (P&O-CPG) based algorithm. The disadvantage of this method is that at steady state, the output power value oscillates around the peak power point so that it has large losses, the Fuzzy Logic Controller (FLC) method is used which can be used to increase the ability of MPPT. This final project will discuss optimization Constant Power Generation (CPG) on a grid-connected wind turbine with the implementation of the Fuzzy Logic Controller (FLC) algorithm. The purpose of this CPG control is to limit power and avoid overvoltage in the load. The power limit injected into the load is determined by limiting the injection voltage where the load limit is +5% so that the maximum power limit entering the load is 231 V. In the FLC method there is no oscillation so it does not cause losses. The FLC algorithm has energy efficiency when there is a change in speed of 98.9%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Turbin angin, MPPT,CPG,FLC
Subjects: Q Science > QA Mathematics > QA336 Artificial Intelligence
T Technology > TJ Mechanical engineering and machinery > TJ808 Renewable energy sources. Energy harvesting.
T Technology > TJ Mechanical engineering and machinery > TJ828 Wind turbines
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
Divisions: Faculty of Electrical Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Bintang Pratama
Date Deposited: 18 Aug 2021 13:42
Last Modified: 18 Aug 2021 13:42
URI: http://repository.its.ac.id/id/eprint/87229

Actions (login required)

View Item View Item