Irfansyah, Rimas Muhammad (2021) Peningkatan Efisiensi Penggunaan Listrik Menggunakan IoT Dan Algoritma Pembelajaran Mesin. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
05111740000185-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2023. Download (1MB) | Request a copy |
Abstract
Perkembangan internet dewasa ini sudah memungkinkan untuk menerapkan sebuah perangkat yang saling terintegrasi melalui internet. Internet of Things (IoT) adalah sebuah sistem perangkat yang saling terhubung melalui koneksi internet dan dapat mengirimkan serta mengolah data dengan input tertentu. Internet of Things dapat mengimplementasi berbagai teknologi, analisa real-time, implementasi machine learning, sensor serta embedded system.
ESP 32 merupakan papan mikrokontroler yang dapat digunakan untuk memroses data modul sensor. Dengan perangkat ESP 32 dapat disambungkan dengan modul ACS 712 untuk menangkap data arus listrik.
Pada sistem monitoring outlier detection, perangkat akan menangkap data arus listrik dari sumber beban yang tersambung dengan listrik AC (Alternating Current) yang kemudian akan diolah datanya menjadi batch data untuk mencari nilai outliers.
Hasil dari implementasi sistem monitoring outlier detection ini dapat membantu pengguna untuk menghemat penggunaan listrik sekaligus memonitoring data dari arus listrik. Sistem juga dapat memberi notifikasi kepada user untuk mengetahui apabila terdapat gangguan pada listrik.
================================================================================================
The development of the internet today has made it possible to implement an integrated device through the internet. Internet of Things (IoT) is a system of devices that are interconnected via an internet connection and can transmit and process data with certain inputs. Internet of Things can implement various technologies, real-time analysis, machine learning implementation, sensors and embedded systems.
ESP 32 is a development board that can be used to process sensor module data. With ESP 32 devices can be connected to the ACS 712 current sensor module to capture electric current data.
In the outlier detection monitoring system, the device will capture electric current data from a load source connected to AC (Altenating Current) power which will then process the data into batch data to find outliers values.
The results of the implementation of this outlier detection monitoring system can help users to save electricity usage while monitoring data from electric currents. The system can also notify the user to find out if there is a disturbance in the electricity.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | arus, batch data, outlier, machine learning, esp32, acs712, detection, iqr, standard deviation, python, firebase |
Subjects: | T Technology > T Technology (General) > T57.5 Data Processing T Technology > T Technology (General) > T57.74 Linear programming |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis |
Depositing User: | Rimas Muhammad Irfansyah |
Date Deposited: | 20 Aug 2021 06:53 |
Last Modified: | 20 Aug 2021 06:53 |
URI: | http://repository.its.ac.id/id/eprint/87893 |
Actions (login required)
View Item |