Rancang Bangun Sistem Monitoring Laju Pernapasan Manusia Dan Pengendalian Kelembaban Udara Dalam Masker Berbasis Internet

Utami, Maya Sedya (2021) Rancang Bangun Sistem Monitoring Laju Pernapasan Manusia Dan Pengendalian Kelembaban Udara Dalam Masker Berbasis Internet. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 10511710000008_Undergraduate_Thesis.pdf] Text
10511710000008_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (4MB) | Request a copy

Abstract

Pemantauan kondisi pernapasan merupakan hal yang utama di masa Covid-19 guna selalu terkontrolnya kondisi napas dan wajibnya penggunaan masker dapat menimbulkan rasa pengap. Berangkat dari hal tersebut, dilakukan rancang bangun sistem monitoring laju pernapasan berdasar pendeteksian perbedaan suhu napas oleh sensor suhu LM35 yang ditampilkan di aplikasi Blynk pada Smartphone. Sistem dilengkapi pula buzzer sebagai peringatan ketika pernapasan tidak normal. Untuk sistem pengendaliannya, aktuator Exhaust Fan berfungsi menjaga kelembaban agar sesuai setpoint yang dideteksi oleh sensor kelembaban DHT11. Dari pengujian performa didapatkan hasil bahwa Mean Error dari sensor suhu LM35 dan DHT11 sebesar 3,1% dan Mean Error sensor kelembaban DHT11 4%. Untuk kelayakan dari alat ukur laju napas diketaui Mean Error sebesar 1,87% dengan keakurasian sebesar 98,1%. Mengenai uji respons fan terhadap setpoint 84%RH didapatkan Error Steady State (ess) 0% dengan Maximum Overshoot (Mp) 1,19 % yang berada dibawah allow tolerance 2%, sedangkan pada uji respons fan terhadap setpoint 70%RH didapatkan Error Steady State (ess) 2,85% dengan Maximum Overshoot (Mp) 7,1% yang berada di atas allow tolerance 5%. Dengan demikian setpoint yang dipilih untuk sistem pengendalian yakni 84%, sebab allow tolerancenya cenderung lebih kecil dari pada setpoint 70% sehingga lebih steady.
===================================================================================================
Monitoring respiratory conditions is the main thing during the Covid-19 period to always control breathing conditions and the mandatory use of masks that can cause stuffiness. Departing from this, a respiratory rate monitoring system was designed based on the detection of differences in breath temperature by the LM35 temperature sensor displayed in the Blynk application on the Smartphone. The system is also equipped with a buzzer as a warning when breathing is not normal. For the control system, the Exhaust Fan actuator functions to maintain humidity according to the setpoint detected by the DHT11 humidity sensor. From the performance test, it was found that the Mean Error of the LM35 and DHT11 temperature sensors was 3.1% and the Mean Error of the DHT11 humidity sensor was 4%. For the feasibility of measuring the respiratory rate, it is known that the Mean Error is 1.87% with an accuracy of 98.1%. Regarding the fan response test to the 84%RH setpoint, 0% Steady State Error (ess) was obtained with Maximum Overshoot (Mp) 1.19% which is below the 2% allow tolerance while the fan response test to 70% RH setpoint obtained Steady State Error (ess) 2.85% with Maximum Overshoot (Mp) 7.1% which is above the 5% allowed tolerance. Thus the setpoint chosen for the control system is 84% because the allow tolerance tends to be smaller than the setpoint of 70% so it is more steady

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Masker Pintar,Monitoring Laju Napas,Pengendalian Kelembaban Masker,Smart Mask,Breathing Rate Monitoring, Humidity Control Mask.
Subjects: Q Science > QC Physics > QC100.5 Measuring instruments (General)
Q Science > QC Physics > QC271.8.C3 Calibration
T Technology > T Technology (General) > T57.5 Data Processing
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7878 Electronic instruments
Divisions: Faculty of Vocational > Instrumentation Engineering
Depositing User: Maya Sedya Utami
Date Deposited: 20 Aug 2021 18:38
Last Modified: 20 Aug 2021 18:38
URI: http://repository.its.ac.id/id/eprint/87979

Actions (login required)

View Item View Item