Nashiruddin, Moh. Hammam (2021) Segmentasi Pelanggan Dan Analisis Keranjang Belanja Untuk Rekomendasi Strategi Pemasaran Produk Pada Pt. XYZ. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
05211740000068_-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2023. Download (3MB) | Request a copy |
Abstract
Industri retail di berbagai daerah terbukti mampu memberi dampak positif bagi perkembangan ekonomi nasional. Mening-katnya pertumbuhan usaha retail baru berdampak pada per-saingan bisnis retail semakin ketat. Dalam kontek ini, peman-fatan teknologi informasi untuk mendapatkan strategi pemas-aran produk yang tepat dan efisien sangat diperlukan untuk memenangkan persaingan bisnis retail.
Tugas akhir ini bertujuan membantu PT XYZ untuk keperluan pembuatan strategi pemasaran produk yang tepat. Pertama, analisis segmentasi pelanggan dilakukan menggunakan algo-ritma k-means beserta metode elbow, metode silhouette, dan CH index untuk memperoleh jumlah segmen yang optimal. Kedua, customer lifetime value (CLV) dihitung menggunakan analisis RFM dan pembobotan berbasis AHP untuk mengetahui urutan prioritas segmen yang dihasilkan. Ketiga, analisis ke-ranjang belanja dengan metode FP-growth kemudian dilakukan pada setiap segmen untuk membangkitkan kombinasi produk yang sering dibeli oleh pelanggan.
Analisis segmentasi menghasilkan jumlah segmen optimal se-banyak tiga segmen. Berdasarkan hasil analisis karakteristik pelanggan pada setiap segmen, ketiga segmen yang dihasilkan secara berurutan diberi label loyal, kurang loyal, dan tidak loyal sesuai dengan urutan peringkat hasil analisis segmentasi. Analisis keranjang belanja secara berturut-turut menghasilkan aturan asosiasi sebanyak 14, 6, dan 50 untuk pelanggan dalam segmen loyal, kurang loyal, dan tidak loyal. Hasil analisis segmentasi dan keranjang belanja ini dapat digunakan oleh perusahaan sebagai bahan dalam pembuatan rekomendasi strategi pemasaran untuk setiap segmen pelanggan.
========================================================================================================
The retail industry in various regions has proven to be able to
have a positive impact on national economic development. The
increasing growth of new retail businesses has an impact on retail business competition getting tougher. In this context, the use
of information technology to get the right and efficient product
marketing strategy is needed to win the retail business competition.
This final project aims to help PT XYZ for the purposes of making the right product marketing strategy. First, customer segmentation analysis is performed using the k-means algorithm
along with the elbow and silhouette methods, and CH index to
obtain the optimal number of segments. Second, customer lifetime value (CLV) is calculated using RFM analysis and AHPbased weighting to determine the order of priority of the resulting segments. Third, market basket analysis using the FPgrowth method is then carried out on each segment to generate
product combinations that are frequently purchased by customers.
Segmentation analysis produces the optimal number of segments as many as three segments. Based on the results of the
analysis of customer characteristics in each segment, the three
segments that are generated sequentially are labeled as loyal,
less loyal, and disloyal cutomers according to the ranking order of the results of the segmentation analysis. Market basket analysis resulted in association rules of 14, 6, and 50 respec-tively
for customers in the loyal, less loyal, and disloyal seg-ments.
The results of segmentation analysis and market baskets analysis can be used by the company as material in making marketing strategy recommendations for each customer segment.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | segmentasi pelanggan, clustering k-means, model LRFM, analisis keranjang belanja, FP-growth customer segmentation, k-means clustering, LRFM model, market basket analysis, FP-growth |
Subjects: | T Technology > T Technology (General) > T58.62 Decision support systems |
Divisions: | Faculty of Information Technology > Information System > 57201-(S1) Undergraduate Thesis |
Depositing User: | Moh Hammam Nashiruddin |
Date Deposited: | 22 Aug 2021 13:50 |
Last Modified: | 22 Aug 2021 13:50 |
URI: | http://repository.its.ac.id/id/eprint/88475 |
Actions (login required)
View Item |