Kontrol Formasi Kooperatif dan Penghindaran Rintangan pada Multiple Unmanned Aerial Vehicle dengan Guidance Route dan Artificial Potential Field

Maynad, Vincentius Charles (2022) Kontrol Formasi Kooperatif dan Penghindaran Rintangan pada Multiple Unmanned Aerial Vehicle dengan Guidance Route dan Artificial Potential Field. Other thesis, Institut Teknologi Sepuluh Nopember.

This is the latest version of this item.

[thumbnail of 07111940000038-Undergraduate_Theses.pdf] Text
07111940000038-Undergraduate_Theses.pdf - Accepted Version

Download (3MB)

Abstract

Dalam beberapa tahun terakhir, kontrol kooperatif sistem multi-UAV (Unmanned Aerial
Vehicle) telah menjadi topik penelitian yang hangat di bidang kontrol penerbangan. Diantaranya,
pengendalian formasi dan penghindaran rintangan adalah salah dua tema yang penting untuk
diteliti karena kompleksitas kondisi permasalahan yang ingin diselesaikan selalu meningkat
seiring waktu. Problema riil ini dapat dimodelkan sebagai permasalahan kontrol penghindaran
rintangan pada formasi quadcopter. Sekelompok quadcopter ditugaskan untuk membentuk
formasi (berupa bentuk V), bergerak dalam formasi menuju titik tujuan, menghindari tabrakan
antar robot, dan menghindari tabrakan dengan rintangan. Model quadcopter yang digunakan
adalah Quanser Qdrone dengan enam derajat kebebasan. Quadcopter dikontrol menggunakan
fuzzy state feedback controller untuk melacak tujuan. Pada tugas akhir ini dirancang suatu
sistem pengaturan formasi menggunakan pendekatan guidance route dengan penghindaran
rintangan menggunakan metode Artificial Potential Field (APF). Selain itu, akan dibandingkan
dua strategi penghindaran, penghindaran total dan penghindaran minimal. Berdasarkan hasil
simulasi, algoritma kontrol yang dikembangkan berhasil melaksanakan tugas pengaturan
formasi dan penghindaran rintangan pada sekelompok quadcopter. Hal ini dibuktikan dengan
rata-rata indeks performansi formasi bernilai 0.800025 untuk strategi penghindaran total dan
1.2227125 untuk strategi penghindaran minimal serta trayektori masing-masing quadcopter
yang bebas tabrakan.
==============================================================================================
In recent years, cooperative control of multi-UAV (Unmanned Aerial Vehicle) systems
has become a hot research topic in the field of flight control. Among them, formation control
and obstacle avoidance are two important themes to study because the complexity of the
problem conditions to be solved always increases with time. This real problem can be modeled
as an obstacle avoidance control problem in a quadcopter formation. A group of quadcopters is
assigned to form a formation (in the form of a V shape), move in formation towards a
destination point, avoid collisions between robots, and avoid collisions with obstacles. The
quadcopter model used is the Quanser Qdrone with six degrees of freedom. The quadcopter is
controlled using a fuzzy state feedback controller to track objectives. In this final project, a
formation management system is designed using the guidance route approach with obstacle
avoidance using the Artificial Potential Field (APF) method. Moreover, two avoidance
strategies will be compared, total avoidance and minimum avoidance. Based on the simulation
results, the developed control algorithm successfully performs the task of setting formation and
obstacle avoidance on a group of quadcopters. This is evidenced by the average formation
performance index of 0.800025 for total avoidance strategy and 1.2227125 for minimum
avoidance strategy with the collision-free trajectories of each quadcopter.

Item Type: Thesis (Other)
Uncontrolled Keywords: Artificial Potential Field, Formation Control, Guidance Route, Obstacle Avoidance
Subjects: T Technology > T Technology (General)
T Technology > T Technology (General) > T57.8 Nonlinear programming. Support vector machine. Wavelets. Hidden Markov models.
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL776 .N67 Quadrotor helicopters--Automatic control
Divisions: Faculty of Electrical Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Vincentius Charles Maynad
Date Deposited: 01 Feb 2023 07:22
Last Modified: 01 Feb 2023 07:22
URI: http://repository.its.ac.id/id/eprint/95976

Available Versions of this Item

Actions (login required)

View Item View Item