Azhar, Zain Zakia (2023) Prediksi Harga Komoditas Logam dengan Model Hidden Markov untuk Optimasi Portofolio. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
06111940000005_Undergraduate_Theses.pdf - Accepted Version Restricted to Repository staff only until 1 April 2025. Download (6MB) |
Abstract
Logam merupakan salah satu aset yang dapat digunakan dalam portofolio investasi. Harga komoditas logam dapat dipengaruhi oleh kurs dolar. Tugas akhir ini bertujuan untuk memprediksi harga komoditas logam menggunakan model Hidden Markov untuk optimasi portofolio. Model Hidden Markov merupakan perkembangan dari rantai Markov dimana terdapat keadaan yang tidak dapat diamati secara langsung namun output yang bergantung pada keadaan tersebut dapat diobservasi. Data yang digunakan adalah data penutupan harga komoditas logam berupa emas, perak, dan tembaga serta data penutupan kurs dolar harian yang masing-masing sebanyak 1200 data. Kemudian, dilakukan interpolasi untuk mengisi kekosongan data harga penutupan pada beberapa hari menggunakan interpolasi linier. Setelah itu, data yang sudah diinterpolasi dibagi menjadi 2 bagian diantaranya 90% untuk training, yaitu mencari model yang tepat dan 10% untuk testing, untuk menguji model yang didapat dari proses training. Selanjutnya, berdasarkan data yang digunakan, dilakukan penghitungan untuk memprediksi harga penutupan komoditas logam dan optimasi portofolio. Hasil yang diperoleh yaitu prediksi harga penutupan kurs dolar dan harga komoditas logam harian pada tanggal 1 September 2022 hingga 2 September 2022, waktu yang tepat untuk melakukan investasi komoditas logam, dan bobot portofolio yang memiliki risiko minimum serta portofolio dengan return maksimum. Penelitian ini diharapkan dapat memberikan manfaat sebagai bahan pertimbangan bagi investor dalam berinvestasi logam.
==============================================================================================================================
Metal is one of the assets that can be used in an investment portfolio. Metal commodity prices can be affected by the dollar exchange rate. This final project aims to predict metal commodity prices using the Hidden Markov Model for portfolio optimization. The Hidden Markov model is a development of the Markov chain where there are conditions that cannot be observed directly but the output that depends on these conditions can be observed. The data used are data on closing prices for metal commodities in the form of gold, silver, and copper as well as closing data on the daily dollar exchange rate, each of which is 1200 data. Then, interpolation is performed to fill in the gaps in closing price data on several days using linear interpolation. After that, the interpolated data is divided into 2 parts including 90% for training, namely finding the right model and 10% for testing, to test the model obtained from the training process. Furthermore, based on the data used, calculations are performed to predict metal commodity closing prices and portfolio optimization. The results obtained are predictions of the closing price of the dollar exchange rate and daily metal commodity prices from September 1, 2022 to September 2, 2022, the right time to invest in metal commodities, and portfolio weight that has minimum risk and portfolio with maximum return. This research is expected to provide benefits as a material consideration for investors in investing in metals.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Dollar Rate, Metal, Portfolio, Markov Chain |
Subjects: | Q Science > QA Mathematics Q Science > QA Mathematics > QA274.2 Stochastic analysis Q Science > QA Mathematics > QA274.7 Markov processes--Mathematical models. Q Science > QA Mathematics > QA276 Mathematical statistics. Time-series analysis. Failure time data analysis. Survival analysis (Biometry) Q Science > QA Mathematics > QA76.9.U83 Graphical user interfaces. User interfaces (Computer systems)--Design. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Zain Zakia Azhar |
Date Deposited: | 10 Feb 2023 04:45 |
Last Modified: | 10 Feb 2023 04:45 |
URI: | http://repository.its.ac.id/id/eprint/96873 |
Actions (login required)
View Item |