Cahyaningtyas, Yunita (2023) Pengelompokkan Kabupaten/Kota di Provinsi Jawa Tengah Berdasarkan Risiko Bencana Banjir Menggunakan Analisis Cluster Hierarki. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
10611910000061-Non_Degree.pdf - Accepted Version Restricted to Repository staff only until 1 April 2025. Download (1MB) | Request a copy |
Abstract
Indonesia merupakan negara tropis yang memiliki musim penghujan. Musim tersebut biasanya dijumpai ketika Bulan Oktober hingga April, namun sekarang musim penghujan tidak menentu karena adanya perubahan iklim. Perubahan iklim telah dinyatakan sebagai masalah global, mengingat suhu bumi diprediksi mengalami kenaikan suhu sebesar 1,5° C dalam tiga tahun mendatang, yang memicu adanya berbagai bencana alam dalam skala lebih besar. Menurut BNPB, bencana paling rawan terjadi di Indonesia setiap tahunnya adalah bencana banjir. Salah satu provinsi yang paling terdampak secara langsung adanya bencana banjir yaitu Provinsi Jawa Tengah. Bencana banjir menimbulkan adanya korban jiwa dan kerusakan prasarana umum, hal itu merupakan risiko bencana banjir. Berdasarkan masalah tersebut, langkah awal sebelum melakukan pencegahan dan mitigasi bencana banjir di Provinsi Jawa Tengah adalah salah satunya dengan mengelompokkan kabupaten/kota berdasarkan risiko bencana banjir. Permasalahan tersebut perlu diselesaikan dengan menerapkan metode analisis cluster hierarki yang bertujuan untuk memprioritaskan kabupaten/kota yang harus ditangani terlebih dahulu dengan mengelompokkan kabupaten/kota di Provinsi Jawa Tengah berdasarkan karakteristik yang sama dari risiko bencana banjir. Data yang digunakan adalah data sekunder yaitu data kejadian bencana banjir tahun 2020, data tersebut terdiri diri variabel persentase kejadian bencana banjir, persentase korban yang menderita dan mengungsi, serta persentase kerusakan prasarana umum, yang diambil dari website BNPB. Hasil analisis terbaik untuk pengelompokkan kabupaten/kota di provinsi jawa tengah adalah menggunakan metode complete linkage dan dihasilkan sebanyak 4 kelompok. kelompok pertama terdapat 2 kabupaten/kota dengan risiko banjir sangat tinggi, kelompok kedua terdapat 15 kabupaten/kota dengan risiko banjir tinggi, kelompok ketiga terdapat 8 kabupaten dengan risiko banjir rendah, dan kelompok keempat terdapat 10 kabupaten/kota dengan risiko banjir sangat rendah
======================================================================================================================================
Indonesia is a tropical country that has a rainy season. The season is usually found from October to April, but now the rainy season is erratic due to climate change. Climate change has been declared a global problem, given that the earth's temperature is predicted to rise by 1.5° C in the next three years, triggering various natural disasters on a larger scale. According to BNPB, the most vulnerable disaster in Indonesia every year is flooding. One of the provinces most directly affected by the flood disaster is Central Java Province. Flood disasters cause casualties and damage to public infrastructure, it is a risk of flood disasters. Based on these problems, the first step beforepreventing and mitigating flood disasters in Central Java Province is one of them by grouping districts/ cities based on flood risk. This problem needs to be solved by applying a hierarchical cluster analysis method that aims to prioritize districts / cities that must be handled first by grouping districts / cities in Central Java Province based on the same characteristics of flood risk. The data used is secondary data, namely data on flood disaster events in 2020, the data consists of variables in the percentage of flood disaster events, the percentage of victims who suffer and are displaced, and the percentage of damage to public infrastructure, which is taken from the BNPB website. The best analysis results for grouping regencies/cities in central Java province were using the complete linkage method and generated as many as 4 groups. The first group has 2 regencies/cities with very high flood risk, the second group has 15 districts/cities with high flood risk, the third group has 8 districts with low flood risk, and the fourth group has 10 districts/cities with very low flood risk
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Climate Change, Complete Linkage, Flood Disaster, Hierarchical Cluster Analysis, Perubahan Iklim, Complete Linkage, Bencana Banjir, Analisis Cluster Hierarki. |
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems. Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics) |
Divisions: | Faculty of Vocational > 49501-Business Statistics |
Depositing User: | Yunita Cahyaningtyas |
Date Deposited: | 20 Feb 2023 03:20 |
Last Modified: | 20 Feb 2023 03:20 |
URI: | http://repository.its.ac.id/id/eprint/97619 |
Actions (login required)
View Item |