Analisis Respon Dinamis Floating Offshore Wind Turbine Kapasitas 5 Mw Dengan Variasi Struktur Penopang Semisubmersible Berbasis Analisis Couple Aero-Hydro-Servo-Elastic

Albasyir, Mujadid Aldin (2023) Analisis Respon Dinamis Floating Offshore Wind Turbine Kapasitas 5 Mw Dengan Variasi Struktur Penopang Semisubmersible Berbasis Analisis Couple Aero-Hydro-Servo-Elastic. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 04311940000045-Undergraduate_Thesis.pdf] Text
04311940000045-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2025.

Download (9MB) | Request a copy

Abstract

Turbin angin merupakan teknologi yang digunakan untuk mengubah energi angin menjadi energi listrik melalui serangkaian sistem yang terdiri atas komponen rotor turbin, generator, dan struktur penopang. Turbin angin lepas pantai terapung atau floating offshore wind turbine (FOWT) merupakan teknologi turbin angin untuk area lepas pantai yang pada umumnya memiliki struktur penopang menyerupai bangunan-bangunan lepas pantai yang umum pada dunia minyak dan gas. Hipotesis utama yang diambil adalah bahwa gerakan struktur akibat beban hidrodinamis dan aerodinamis mempengaruhi performa turbin angin dalam mengonversi energi angin menjadi energu listrik. Dalam penelitian ini, dilakukan uji tiga model semisubmersible FOWT dengan kapasitas 5 MW yaitu DeepCWind, VolturnUS-S, dan HiveWind. Performa setiap FOWT akan dianalisis dengan menerapkan pembebanan lingkungan sesuai data lokasi energi angin berpotensi yaitu di perairan Arafuru. Beberapa luaran simulasi yang akan dianalisis pada setiap desain adalah gerakan FOWT, gaya tarik tali tambat, defleksi komponen elastis, dan output daya generator. Simulasi dilakukan menggunakan solusi dinamis time domain berbasis couple hidro-aero-servo-elastic. Luaran hasil analisis ditampilkan dalam nilai statistik serta sebaran frekuensi output melalui power spectral density. Secara umum, kemampuan struktur ponapang dalam meredam fluktuasi gerak akibat beban aerodinamis maupun hidrodinamis menjadi kunci untuk memastikan kinerja turbin yang aman dan efisien. HiveWind memiliki getaran struktur dengan amplitudo yang lebih besar dan sebaran frekuensi yang lebih acak dan ini mempengaruhi defleksi rotor dan output daya generator. Probabilitas defleksi blade melebihi 3,15-meter selama simulasi untuk DeepCWind, VolturnUS-S, dan HiveWind masing-masing adalah 23,81%, 29,84%, dan 38,23%. Simpangan daya generator dari spesifikasi kapasitas 5 MW untuk FOWT DeepCWind, VolturnUS-S, dan HiveWind masing-masing adalah sebesar 3%, 6%, dan 17%
==================================================================================================================================
Wind turbines are technology used to convert wind energy into electrical energy through a series of systems consisting of turbine rotor components, generators, and supporting structures. Floating offshore wind turbines (FOWT) are wind turbine technologies for offshore areas which generally have supporting structure taking after offshore buildings which are common in oil and gas industry. The main hypothesis taken is that the movement of structures due to hydrodynamic and aerodynamic loads affects the performance of wins turbine in converting wind energy into electrical energy. In this study, three concepts of semisubmersible FOWT with a capacity of 5 MW wind turbine were tested, namely DeepCwind, VolturnUS-S, and HiveWind. The performance of each FOWT will be analyzed by applying environmental loading according to data on potential wind energy locations, which is in Arafuru sea. Some of the simulation outputs that will be analyzed for each design are the FOWT motion, mooring line tension, the deflection of elastic componentsm, and the power output of generator. The simulation was carried out using couple hydro-aero-servo-elastic based time domain dynamic solution. The analysis results are displayed in statistical values and the distribution of output frequencies through power spectral density. In general, the ability of the supporting structure to dampen fluctuations in motion due to aerodynamic and hydrodynamic load is the key to ensuring safe and efficient turbine performance. HiveWind has a structure vibration with larger amplitude and more random frequency spread. Those affect the larger rotor deflection and generator power output. The probability of blade deflection exceeding 3,15-meters during the simulation for DeepCWind, VolturnUS-S, and HiveWind are 23,81%, 29,84%, and 38,23%, respectively. The generator power deviation from the 5 MW capacity specification for DeepCWind, VolturnUS-S, and HiveWind are 3%, 6%, and 17%, respectively.

Item Type: Thesis (Other)
Uncontrolled Keywords: Floating Offshore Wind Turbine, Couple Hydro-Aero-Servo-Elastic, Hydrodynamic, Aerodynamic, Generator Power
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > TC Hydraulic engineering. Ocean engineering > TC1680 Offshore structures
T Technology > TJ Mechanical engineering and machinery > TJ808 Renewable energy sources. Energy harvesting.
T Technology > TJ Mechanical engineering and machinery > TJ820 Wind power
T Technology > TJ Mechanical engineering and machinery > TJ828 Wind turbines
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM161 Ships--Hydrodynamics
Divisions: Faculty of Marine Technology (MARTECH) > Ocean Engineering > 38201-(S1) Undergraduate Thesis
Depositing User: Mujadid Aldin Albasyir
Date Deposited: 18 Jul 2023 07:58
Last Modified: 18 Jul 2023 07:58
URI: http://repository.its.ac.id/id/eprint/98568

Actions (login required)

View Item View Item