Analisis Pengaruh Variasi Doping MnO₂ Pada Katoda Na₂Zr₍₁₋ₓ₎Mn₍ₓ₎O₃ Terhadap Struktur Kristal, Morfologi, Dan Performa Elektrokimia Sodium-Ion Battery (SIB)

Setiawan, Taufiqur Rahman (2023) Analisis Pengaruh Variasi Doping MnO₂ Pada Katoda Na₂Zr₍₁₋ₓ₎Mn₍ₓ₎O₃ Terhadap Struktur Kristal, Morfologi, Dan Performa Elektrokimia Sodium-Ion Battery (SIB). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02511940000046-Undergraduate_Thesis.pdf] Text
02511940000046-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (5MB) | Request a copy

Abstract

Sodium memiliki kemiripan properti elektrokimia serta kelimpahannya membuat sodium berpeluang dalam menggantikan peran litium sebagai penyimpan energi. Katoda Na₂ZrO₃ memiliki kapasitas teoritis sebesar 289 mAh/g. Dalam upaya optimalisasi kinerja katoda Na₂ZrO₃, maka dilakukan strategi modifikasi yaitu doping. Mn menjadi salah satu kandidat kuat dalam modifikasi baterai ion sodium. Oleh karena itu, dalam penelitian ini dilakukan untuk mengetahui pengaruh baterai berbasis ion sodium berupa Na₂Zr₍₁₋ₓ₎Mn₍ₓ₎O₃ dengan penambahan doping Mn dalam bentuk senyawa MnO₂ dengan variasi mol x = 0%, 3%, 5%, 7%, dan 10% terhadap struktur kristal, morfologi, dan performa elektrokimia. Penelitian ini dilakukan dengan pengujian SEM, XRD, EIS, GCD, dan CV. Parameter kisi, posisi puncak, d-spacing, dan ukuran kristalit mengalami pengecilan seiring dengan penambahan doping MnO₂. Secara umum parameter kisi mengalami penyusutan seiring dengan penambahan doping MnO₂. Penyusutan ini merupakan indikasi ion Mn⁴⁺ memasuki struktur kristal monoklinik. Selain itu juga, terjadi aglomerasi partikel seiring dengan penambahan doping MnO₂. Distribusi partikel semakin mengalami pertumbuhan seiring dengan bertambahnya doping MnO₂. Hasil pengujian EIS pada kelima variasi menghasilkan resistansi elektrolit paling rendah pada variasi NZM-10 yaitu sebesar 389.61 ohm, sedangkan resistansi transfer muatan paling rendah diperoleh variasi NZM-7 yaitu sebesar 46.96 ohm. Pada pengujian CV, reaksi interkalasi-deinterkalasi paling cepat diperoleh variasi NZM-3 sedangkan variasi NZM-5 memiliki proses yang paling lambat. Hal ini ditandai dengan jarak puncak reaksi oksidasi-reduksi paling dekat yang dihasilkan oleh NZM-3 yaitu sebesar 0.655 V dan jarak puncak reaksi oksidasi-reduksi yang paling jauh dihasilkan oleh NZM-5 yaitu sebesar 1.728 V. Adanya fenomena microcrack, pada NZM-5 memungkinkan proses interkalasi-deinterkalasi menjadi terhambat. Pada hasil pengujian GCD, kapasitas terbesar diperoleh pada variasi NZM-3 dengan kapasitas charge/discharge sebesar 17.08/7.09 mAh/g pada siklus ke-5. Sedangkan kapasitas charge/discharge paling kecil dihasilkan oleh variasi NZM-5 yaitu sebesar 0.62/0.122 mAh/g pada siklus ke-5.
====================================================================================================================================
Sodium has a similar properties making it a potential replacement for lithium as energy storage. The Na₂ZrO₃cathode has a theoretical capacity of 289 mAh/g, making it a strong candidate for replacing lithium-ion batteries. In an effort to optimize the performance of the Na₂ZrO₃ cathode, a modification strategy called doping is carried out. Mn is one of the strong candidates for modifying sodium-ion batteries. Therefore, this research aims to determine the effect of sodium-ion batteries based on Na₂Zr₍₁₋ₓ₎Mn₍ₓ₎O₃, with the addition of Mn doping as MnO₂ at various mole fractions of x = 0%, 3%, 5%, 7%, and 10%, on the crystal structure, morphology, and electrochemical performance. This research is conducted using SEM, XRD, EIS, GCD, and CV tests. The lattice parameter, peak position, d-spacing, and crystal size decrease with the addition of MnO₂ doping. Generally, the lattice parameter shrinks with the addition of MnO₂ doping, indicating the incorporation of Mn⁴⁺ ions into the monoclinic crystal structure. Additionally, particle agglomeration occurs with the addition of MnO₂ doping. The particle distribution increases with increasing MnO₂ doping. The EIS test results for the five variations show the lowest electrolyte resistance in the NZM-10 variation, which is 389.61 ohms, while the lowest charge transfer resistance is obtained in the NZM-7 variation, which is 46.96 ohms. In the CV test, the intercalation-deintercalation reaction is fastest in the NZM-3 variation, while the NZM-5 variation has the slowest process. This is indicated by the closest peak distance of the oxidation-reduction reaction produced by NZM-3, which is 0.655 V, and the furthest peak distance of the oxidation-reduction reaction produced by NZM-5, which is 1.728 V. The presence of microcracks in NZM-5 hampers the intercalation-deintercalation process. In the GCD test, the highest capacity is obtained in the NZM-3 variation with a charge/discharge capacity of 17.08/7.09 mAh/g in the 5th cycle. Meanwhile, the worst charge/discharge capacity is obtained in the NZM-5 variation, which is 0.62/0.122 mAh/g in the 5th cycle.

Item Type: Thesis (Other)
Uncontrolled Keywords: Doping, Manganese Oxide, Sodium Ion Battery, Doping, Mangan Oksida, Baterai ion Sodium
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 28201-(S1) Undergraduate Thesis
Depositing User: Taufiqur Rahman Setiawan
Date Deposited: 26 Jul 2023 02:28
Last Modified: 26 Jul 2023 02:28
URI: http://repository.its.ac.id/id/eprint/99207

Actions (login required)

View Item View Item