Putra, Thierry Rayhan Wisnu (2024) Analisis Pengaruh Penambahan Massa CNT Terhadap SIfat Kapasitif Superkapasitor Hybrid Berbahan Komposit MnO2/N-rGO/CNT. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5011201122-Undergraduate_Thesis.pdf Download (6MB) |
Abstract
Kebutuhan akan mobil listrik semakin meningkat untuk mencapai lingkungan zero emission dan mengurangi penggunaan bahan bakar fosil. Salah satu komponen penting dalam mobil listrik adalah superkapasitor, yang berfungsi untuk pengisian dan pengosongan energi, terutama saat pengereman. Penelitian terbaru berfokus pada superkapasitor hybrid yang menggabungkan karakteristik EDLC (electric double layer capacitor) dengan material seperti reduced graphene oxide (rGO) dan Carbon Nanotubes (CNT), serta karakteristik pseudocapacitor dengan material MnO2. Penelitian ini bertujuan untuk mensintesis elektroda superkapasitor hybrid menggunakan Nitrogen-doped rGO (N-rGO) dan CNT yang dikompositkan dengan MnO2, serta menganalisis pengaruh variasi massa CNT (25 mg, 50 mg, 75 mg) terhadap struktur, morfologi, konduktivitas, dan sifat kapasitif komposit (MnO2/N-rGO/CNT). Karakterisasi dilakukan melalui SEM-EDX, XRD, dan FTIR, sementara pengujian performa elektrokimia meliputi CV, EIS, dan GCD. Hasil menunjukkan bahwa penambahan CNT meningkatkan kapasitansi, dengan nilai tertinggi pada pengujian CV K75. Dari hasil XRD didapatkan bahwa penambahan massa CNT membuat dspacing material komposit semakin lebar yang menandakan semakin banyak adsorpsi ion, hal ini dapat meningkatkan sifat kapasitif dari komposit. Nilai kapasitansi spesifik dari pengujian CV yang paling tinggi adalah K75 dengan nilai kapasitansi sebesar 313.78 F/g, dari pengujian EIS didapatkan kapasitansi sebesar 297.071 F/g dengan nilai konduktivitas sebesar 1.977 sm-1, selanjutnya dari pengujian GCD diperoleh kapasitansi sebesar 502.187 F/g. Pada penelitian ini, dapat disimpulkan bahwa penambahan massa CNT untuk superkapasitor hybrid berbahan komposit mampu meningkatkan sifat kapasitifnya.
===================================================================================================================
The need for electric cars is increasing to achieve a zero emission environment and reduce the use of fossil fuels. One of the important components in electric cars is a supercapacitor, which functions to charge and discharge energy, especially during braking. Recent research focuses on hybrid supercapacitors that combine the characteristics of EDLC (electric double layer capacitor) with materials such as reduced graphene oxide (rGO) and Carbon Nanotubes (CNT), as well as the characteristics of pseudocapacitors with MnO2 materials. This study aims to synthesize hybrid supercapacitor electrodes using Nitrogen-doped rGO (N-rGO) and CNTs composited with MnO2, and to analyze the effect of variations in CNT mass (25 mg, 50 mg, 75 mg) on the structure, morphology, conductivity, and capacitive properties of the composite (MnO2/NrGO/CNT). Characterization was carried out using SEM-EDX, XRD, and FTIR, while electrochemical performance testing included CV, EIS, and GCD. The results show that the addition of CNT increases the capacitance, with the highest value in the CV K75 test. From the XRD results, it was found that the addition of CNT mass made the composite material spacing wider, indicating more ion adsorption, this can increase the capacitive properties of the composite. The highest specific capacitance value from the CV test was K75 with a capacitance value of 313.78 F/g, from the EIS test a capacitance of 297.071 F/g was obtained with a conductivity value of 1.977 sm-1, then from the GCD test a capacitance of 502.187 F/g was obtained. In this study, it can be concluded that the addition of CNT mass to hybrid supercapacitors made of composites can increase their capacitive properties.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | CNT, MnO2, N-rGO, Kapasitansi, Superkapasitor Hybrid CNT, Hybrid Supercapacitor, Capacitance MnO2, N-rGO |
Subjects: | Q Science > QD Chemistry > QD1 Oxidation-reduction reaction. Q Science > QD Chemistry > QD553 Electrochemistry. Electrolysis Q Science > QD Chemistry > QD63.O9 Electrolytic oxidation. |
Divisions: | Faculty of Industrial Technology > Material & Metallurgical Engineering > 28201-(S1) Undergraduate Thesis |
Depositing User: | Thierry Rayhan Wisnu Putra |
Date Deposited: | 02 Aug 2024 03:49 |
Last Modified: | 02 Aug 2024 03:49 |
URI: | http://repository.its.ac.id/id/eprint/111458 |
Actions (login required)
View Item |