Konstruksi Persamaan Permukaan Bentuk-Telur Menggunakan Kurva Bentuk-Telur Hu¨Gelschaffer

Maulana, Ahmat Rif’an (2015) Konstruksi Persamaan Permukaan Bentuk-Telur Menggunakan Kurva Bentuk-Telur Hu¨Gelschaffer. Undergraduate thesis, Institut Technology Sepuluh Nopember.

[img]
Preview
Text
1213201206-Master Thesis.pdf - Published Version

Download (1MB) | Preview

Abstract

Kurva bentuk-telur H¨ugelschaffer adalah kurva bentuk-telur yang dikonstruksi dari dua buah lingkaran tak-sepusat menggunakan transformasi Newton yang diketahui sebagai hyperbolism. Penelitian ini bertujuan untuk merumuskan persamaan permukaan bentuk-telur yang diperoleh dari kurva bentuk-telur H¨ugelschaffer yang diputar pada sumbu-x, sumbu-y dan sumbu-z, dan untuk merumuskan volume dan luas permukaan bentuk-telur serta memvisualisasikan persamaan permukaan bentuk-telur yang diperoleh menggunakan software Geogebra. Kurva bentuk-telur H¨ugelschaffer dipilih karena persamaannya sederhana dan merepresentasikan garis tepi telur asli. Proses konstruksi persamaan permukaan bentuk-telur dilakukan dengan cara membuat sketsa kurva bentuktelur pada bidang-xy dan bidang-xz, kemudian kurva diputar pada sumbusumbu koordinat. Sedangkan, untuk merumuskan volume bangun ruang bentuktelur digunakan integral volume metode cakram. Luas permukaan bentuk-telur dihitung menggunakan integral luas permukaan. Visualisasi persamaan permukaan bentuk-telur dilakukan menggunakan GeoGebra dengan terlebih dahulu mengubah persamaan permukaan bentuk-telur (persamaan kartesian) ke bentuk persamaan parametrik. Dari hasil pengonstruksian diperoleh persamaan permukaan bentuktelur pada masing-masing sumbu putar dimana titik tengah sumbu mayor di titik Q(p; q; r); rumus volume bangun ruang bentuk-telur; luas permukaan bentuk-telur dihitung secara numerik; dan dari hasil visualisasi persamaan permukaan bentuktelur, dengan mengubah-ubah nilai-nilai parameter, yaitu jika a = b > 0 dan w = 0 diperoleh bola, jika a > b > 0 dan w = 0 diperoleh ellipsoid-putar dan jika a > b > 0 dan 0 < jwj < a diperoleh permukaan bentuk-telur oval. ========================================================================================================= H¨ugelschaffer’s egg-shaped curve is egg-shaped curve that is constructed by non-concentric two circles using Newton’s transformation known as hyperbolism. H¨ugelschaffers egg-shaped curve is selected because its equation is simple. The goals of this research are to construct the egg-shaped surface equations using H¨ugelschaffers egg-shaped curve that is rotated about the x-axis, y-axis and z-axis, and to formulate of the volume of the egg-shaped solid and the egg-shaped surface area, also to visualize the egg-shaped surface equations using GeoGebra software. The procedures of the construction of the egg-shaped surface equations are done by drawing the curve onto the xy-plane and xz-plane, then, it is rotated about axes of coordinate. The volume formula of the egg-shaped solid is formulated by using the disk method of the volume integral. The egg-shaped surface area is calculated by using the integral of surface area. Visualization of the egg-shaped surface equations are done using GeoGebra. Based on processes construction are gotten the eggshaped surface equations on each rotation axis, where the mid-point of major axis is on Q(p; q; r); the formula of the egg-shaped solid volume ; the egg-shaped surface area is calculated numerically; visualization of the egg-shaped surface equations by changing parameter values of a; b and w will result sphere, ellipsoid and oval egg-shaped surface.

Item Type: Thesis (Undergraduate)
Additional Information: RTMa 515.353 4 Mau k
Uncontrolled Keywords: Transformasi Newton, kurva bentuk-telur H¨ugelschaffer, persamaan permukaan bentuk-telur
Subjects: Q Science > QA Mathematics > QA278.3 Structural equation modeling.
Divisions: Faculty of Mathematics and Science > Mathematics > 44101-(S2) Master Thesis
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 10 Oct 2019 06:56
Last Modified: 10 Oct 2019 06:56
URI: https://repository.its.ac.id/id/eprint/71105

Actions (login required)

View Item View Item