Studi Eksperimen Peningkatan Kinerja Turbin Angin Savonius dengan Penempatan Silinder Pengganggu di depan Returning Blade Turbin. “Studi kasus untuk ukuran silinder pengganggu d/D = 0,5; y/D = 0,5; S/D = 1,4 serta kecepatan aliran angin 3,8 m/s, 4,4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s dan 9 m/s”

Paramesti, Suksmatatya (2020) Studi Eksperimen Peningkatan Kinerja Turbin Angin Savonius dengan Penempatan Silinder Pengganggu di depan Returning Blade Turbin. “Studi kasus untuk ukuran silinder pengganggu d/D = 0,5; y/D = 0,5; S/D = 1,4 serta kecepatan aliran angin 3,8 m/s, 4,4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s dan 9 m/s”. Undergraduate thesis, INSTITUT TEKNOLOGI SEPULUH NOPEMBER.

[img] Text
02111640000133-Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (19MB) | Request a copy

Abstract

Abstrak Keterbatasan sumber daya energi fosil yang diikuti dengan peningkatan kebutuhan energi sebesar 4,4% per tahun serta emisi yang ditimbulkan dari penggunaan bahan bakar fosil, menjadikan peralihan ke energi alternatif terutama energi rendah karbon sebagai suatu keharusan, bukan lagi hanya sekedar pilihan. Salah satu energi terbarukan yang berpotensi untuk dikembangkan di Indonesia adalah energi alternatif angin. Namun angka pemanfaatan energi angin sebagai pembangkit ini masih cukup jauh dari potensi yang dimiliki. Dengan demikian, Indonesia membutuhkan turbin yang dapat beroperasi secara optimal pada kecepatan angin menengah (4 m/s s.d. 6 m/s). Turbin yang sesuai dengan kondisi angin dan kondisi geografis Indonesia adalah turbin angin Savonius. Walaupun turbin ini memiliki banyak kecocokan dan kelebihan, efisiensinya paling rendah jika dibandingkan dengan turbin jenis lainnya maka perlu dilakukan suatu studi eksperimen sebagai upaya meningkatkan performa turbin angin Savonius dengan peletakkan silinder pengganggu di depan returning blade. Dalam studi eksperimen ini digunakan turbin angin Savonius dua sudu dengan diameter sudu turbin (D) 167 mm, diameter end plate (Do) sebesar 320 mm, tinggi (H) sebesar 298 mm dan diameter poros (b) sebesar 19 mm. Selanjutnya digunakan sebuah silinder sirkular pengganggu dengan diameter (d) sebesar 83 mm. Pada penelitian ini digunakan nilai d/D = 0,5, y/D = 0,5, H/L = 1, variasi S/D 1,4 serta variasi kecepatan 3,8 m/s, 4,4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s dan 9 m/s. Aliran angin pada eksperimen ini berasal dari axial fan yang selanjutnya melewati honeycomb terlebih dahulu untuk penyeragaman aliran sebelum mengenai benda uji. Pengaturan kecepatan aliran dengan mengatur voltase axial fan dengan voltage regulator. Dilibatkan beberapa alat ukur seperti anemometer untuk mengukur kecapatan angin, tachometer untuk mengukur putaran sudu turbin dan torquemeter untuk mengukur torsi statis. Perhitungan torsi dinamis menggunakan sistem pengukuran yang bernama brake dynamometer. Hasil yang dicapai pada penelitian ini adalah peletakkan silinder pengganggu dengan d/D = 0,5 pada jarak y/D = 0,5 dan S/D = 1,4 terbukti efektif menaikkan coefficient of power, coefficient of moment dan torsi statis. Kenaikkan CoP maksimum terbesar dicapai pada kecepatan aliran 4,4 m/s sebesar 108,76% dan kenaikan CM maksimum terbesar pada kecepatan aliran 5 m/s sebesar 79,39%. Pada kecepatan 5 m/s s.d. 9 m/s, peletakkan silinder pengganggu efektif menaikkan koefisien torsi statis turbin hingga turbin memiliki kemampuan self starting di seluruh sudut. Sedangkan pada kecepatan 3,8 m/s dan 4,4 m/s nilai koefisien torsi statis mengalami kenaikkan namun masih ditemui nilai negatif di beberapa sudut tertentu yang mengindikasikan turbin tidak memiliki kemampuan self starting pada sudut – sudut tersebut. Kata kunci: Turbin angin Savonius, silinder pengganggu, returning blade, torsi statis, torsi dinamis, coefficent of power, coefficient of moment, tip speed ratio. ======================================================== Abstract The limitations of fossil energy resources which followed by an increment in energy needs for about 4.4% per year and emissions resulting from the use of fossil fuels, making the transition to alternative energy, particularly low carbon energy, as a necessity. It is no longer just an optional choice. One of the renewable energies which potentially to be utilized and developed in Indonesia is wind energy. However, the number of wind energy utilization as the power plant is still far from its potential. Thus, Indonesia needs a wind turbine which can operate optimally at medium wind speeds (4 m/s ~ 6 m/s). Type of wind turbine which appropriates to Indonesia’s wind and geographical conditions is the Savonius wind turbine. Even though this type of turbine has many compatibilities and advantages, compared to other types of turbines, its efficiency is the lowest. Therefore, it is necessary to conduct an experimental study in an effort to improve the performance of Savonius wind turbines by placing a circular cylinder in front of the turbine’s returning blade. In this experimental study, a two-blades Savonius wind turbine with specification comprises turbine’s blade diameter (D) = 167, endplate diameter (Do) = 320 mm, shaft diameter (b) = 19 mm, turbine height (H) = 298 mm and aspect ratio (H/L)=1, will be used. Furthermore, a circular cylinder with diameter (d) = 83 mm and d/D = 0.5 also be used and will be placed at y/D = 0.5 and a S/D = 1.4. This experimental study will be conducted in seven variations of wind velocity such as 3.8 m/s, 4.4 m/s, 5 m/s, 6 m/s, 7 m/s, 8 m/s dan 9 m/s. The wind flow in this experiment produced by the axial fan, which then passes the honeycomb first to uniform the flow before it hits the test objects (i.e. Savonius wind turbine & cylinder circular). Flow speed adjustment is made by adjusting the axial fan voltage with a voltage regulator. This experimental study involves several measuring devices such as anemometer to measure wind speed, a tachometer to measure turbine blade rotational speed and torque meter to measure turbine’s static torque. Dynamic torque measurement uses a measurement system called brake dynamometer. The results in this experimental study show that the placing a d/D = 0.5 cylinder circular at y/D = 0.5 and S/D = 1.4 have proven to be effective in increasing the coefficient of power, coefficient of moment and static torque. The largest maximum CoP increment was achieved at wind velocity of 4.4 m/s for 108.76%, while the largest maximum CM was obtained at wind velocity of 5 m/s for 79.39%. While at wind velocity of 5 m/s ~ 9 m/s, placing a circular cylinder has proven to be effective in increasing coefficient of static torque so that the turbine has self-starting capability at all angles, at wind velocity of 3.8 m/s and 4.4 m/s negative values of torque are still found at certain angles which indicate the turbine does not have the self-starting ability at these angles. Keywords: Savonius wind turbine, circular cylinder, returning blade, static torque, dynamic torque, coefficient of power, coefficient of moment, tip speed ratio.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Turbin angin Savonius, silinder pengganggu, returning blade, torsi statis, torsi dinamis, coefficent of power, coefficient of moment, tip speed ratio.
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction
T Technology > TJ Mechanical engineering and machinery > TJ820 Wind power
T Technology > TJ Mechanical engineering and machinery > TJ828 Wind turbines
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Suksmatatya Paramesti
Date Deposited: 27 Aug 2020 06:57
Last Modified: 27 Aug 2020 06:57
URI: https://repository.its.ac.id/id/eprint/78733

Actions (login required)

View Item View Item