Utama, Syirrul Hadi (2022) Analisis Tingkat Kesejahteraan Rumah Tangga Dan Pekerjaan Kepala Rumah Tangga Sektor Pertanian Dan Non Pertanian Di Provinsi Papua Barat Dengan Pendekatan Analisis Probit Biner Bivariat Rekursif. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6003201022-Master_Thesis.pdf - Accepted Version Download (4MB) |
Abstract
Kemiskinan saat ini masih menjadi masalah global yang harus segera dientaskan sesuai dengan Sustainable Development Goals (SDG’s) ke- 1 yaitu mengakhiri kemiskinan di manapun dan dalam bentuk apapun. Pada tahun 2021, provinsi Papua Barat merupakan provinsi dengan persentase penduduk miskin terbesar ke-2 setelah provinsi Papua dengan 21,84% penduduk miskin yang didominasi oleh kepala rumah tangga yang bekerja pada sektor pertanian sebanyak 65,1%. Dalam penelitian ini akan dilakukan pemodelan secara bersama antara tingkat kesejahteraan rumah tangga dengan sektor pekerjaan Kepala Rumah Tangga (KRT) di provinsi Papua Barat. Diduga kedua variabel ini memiliki masalah endogenitas, dimana salah satu variabel respon menjadi variabel prediktor pada persamaan lainnya, sehingga digunakan model regresi probit biner bivariat rekursif. Estimasi parameter regresi probit biner bivariat rekursif menggunakan Maximum Likelihood Estimation (MLE) namun hasilnya tidak closed form sehingga dilanjutkan dengan menggunakan metode iterasi Newton-Raphson. Hasil pengujian hipotesis menunjukkan bahwa secara partial, variabel yang signifikan mempengaruhi tingkat kesejahteraan rumah tangga antara lain variabel status perkawinan, KRT pekerja formal/informal, keluhan kesehatan, status kepemilikan aset, status migrasi, jumlah anggota rumah tangga, kalsifikasi wilayah tempat tinggal (desa/kota), umur KRT, dan sektor pekerjaan KRT. Sedangkan variabel yang signifikan mempengaruhi pilihan bekerja pada sektor pertanian antara lain pendidikan KRT, klasifikasi wilayah tempat tinggal (desa/kota), dan umur KRT.
====================================================================================================================================
Poverty is a global problem that must be solved immediately. According to the Sustainable Development Goals (SDG’s), the first goal is to end poverty in all its forms everywhere by 2030. In 2021, Papua Barat province is the 2nd largest percentage of poor people after Papua province with 21,84% of the poor population. Poor households in Papua Barat province are dominated by the head of households who work in the agricultural sector with 65,1%. There are two response variables in this study, the level of the household’s welfare and the job sector of the head of the household. Joint modelling will be conducted between two response variables. It is suspected that these two variables have an endogeneity problem, where one of the response variables becomes a predictor variable in the other equation, therefor a binary recursive bivariate probit modelling will be used. The parameter estimation of the binary bivariate recursive probit using Maximum Likelihood Estimation (MLE) has no closed-form result, so it is will be solved by the Newton-Raphson iteration method. The results of hypothesis testing show that partially, the variables that significantly affect the level of household welfare are marital status, head of household work status, health complaints, asset ownership status (house), migration status, number of household members, classification of residential area (urban/rural), the age of the head of household, and the occupation of the head of household. Meanwhile, variables that significantly affect the choice of working in the agricultural sector are the education of the head of household, classification of the area of residence (urban/rural), and age of the head of household.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTSt 519.536 Uta a-1 2022 |
Uncontrolled Keywords: | Probit Bivariat Rekursif, Kesejahteraan, Sektor Pekerjaan, MLE, Newton-Raphson, Recursive Bivariate Probit, Welfare, Job sector, MLE, Newton Raphson |
Subjects: | Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49101-(S2) Master Thesis |
Depositing User: | - Davi Wah |
Date Deposited: | 08 Jan 2025 04:57 |
Last Modified: | 08 Jan 2025 04:57 |
URI: | http://repository.its.ac.id/id/eprint/116078 |
Actions (login required)
View Item |