Gulo, Joseph Wilantara (2016) Investigasi Solusi Analitis Unsteady Free Convection Pada Media Berpori. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
2412100084-undergraduate-theses.pdf - Published Version Download (1MB) | Preview |
Preview |
Text
2412100084-presentationpdf.pdf - Published Version Download (720kB) | Preview |
Preview |
Text
2412100084-paperpdf.pdf - Published Version Download (669kB) | Preview |
Abstract
Solusi analitis dari unsteady free convection pada media berpori diteliti dalam tulisan ini. Solusi eksplisit untuk unsteady free convection pada media berpori didapatkan dengan menggunakan persamaan dasar yang dikemukakan Johnson dan Cheng, serta kondisi batas yang dikemukakan Magyari dan Pop. Persamaan dasar disesuaikan dengan kondisi batas lalu dibentuk menjadi solusi persamaan diferensial linier orde dua. Kemudian solusi direduksi menjadi persamaan nonlinier orde satu (persamaan Riccati). Solusi eksplisit ini memiliki arti fisis jika m<0 dan C2<0, dengan m dan n adalah konstanta yang ditentukan oleh kondisi batas. Dibandingkan dengan viskos dan difusi panas, efek konveksi dapat diabaikan. Karena alasan ini panas dan aliran sering disebut daerah konduksi. Estimasi yang dilakukan dengan menetapkan variasi nilai m=-1 dan m=-2 menunjukkan bahwa daerah konduksi yang terjadi saat permulaan free convection sangatlah kecil dan hanya terjadi pada rentang waktu yang sangat singkat. Semakin kecil nilai parameter m semakin kecil pula nilai t dan n yang didapatkan. Hal ini menunjukkan semakin kecilestimasi daerah konduksi juga semakin kecil.
============================================================
========================================
Analytical solutions of unsteady free convection in porous media is presented in this research. Explicit solution for unsteady free convection in a porous media is obtained using the governing equations proposed by Johnson and Cheng and the boundary conditions are set by Magyari and Pop. Governing equations and boundary conditions transform into a solution of second order linear differential equation. Then the solution is reduced to a nonlinear equation of first order (Riccati equation). Explicit solution has physical meaning if m <0 and C2 <0, which m and n are constants that be determined by boundary conditions. When the free convection heat is started, if it are compared to the viscous and thermal diffusion, convection effects are negligible small. For this reason , the heat and the flow is often called the conduction regime. This research estimates conduction regime with variation of m=-1 and m=-2. The estimation indicates that the conduction regime is very small which occur at very shot time interval. The smaller value of the parameter m, the smaller value of t and n are obtained. The smaller value of m, estimation value of conduction regime are getting smaller
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSF 621.402 25 Gul i |
Uncontrolled Keywords: | Unsteady;Convection; Media; Berpori |
Subjects: | T Technology > T Technology (General) > T58.8 Productivity. Efficiency |
Divisions: | Faculty of Industrial Technology > Physics Engineering > 30201-(S1) Undergraduate Thesis |
Depositing User: | EKO BUDI RAHARJO |
Date Deposited: | 04 Oct 2019 02:04 |
Last Modified: | 04 Oct 2019 02:04 |
URI: | http://repository.its.ac.id/id/eprint/70982 |
Actions (login required)
View Item |