Analisis Responsiveness dan Conversational Tone Chatbot terhadap Social Media Engagement pada Layanan Online Shopping untuk Rekomendasi Peningkatan Price Premium dengan Structural Equation Modelling

Nesia, Nesia (2023) Analisis Responsiveness dan Conversational Tone Chatbot terhadap Social Media Engagement pada Layanan Online Shopping untuk Rekomendasi Peningkatan Price Premium dengan Structural Equation Modelling. Other thesis, Institut Tekonologi Sepuluh Nopember.

[thumbnail of 05211940000009_Undergraduate_Thesis.pdf] Text
05211940000009_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2025.

Download (4MB) | Request a copy

Abstract

Konteks: Bot layanan online shopping Shopee berfungsi sebagai pengganti service agent atau garda terdepan yang bertugas untuk menanggapi pengguna sebelum terhubung kepada penjual dan customer services. Kepuasan pengguna terhadap responsivitas dan cara bot berkomunikasi dalam menanggapi komplain yang disampaikan kepada pengguna, berpengaruh terhadap keterlibatan pengguna di media sosial. Pengguna akan terlibat dengan baik di media sosial jika mereka puas dengan interaksi layanan chatbot online shopping.
Permasalahan: Permasalahan yang sedang dialami saat ini yaitu terdapat interaksi antara chatbot agent Shopee dan pengguna yang berpotensi menurunkan intensi price premium. Penurunan keputusan pembayaran ini dapat terlihat dari engagement social media pengguna yang negatif, sehingga menurunkan keinginan pembelian. Interaksi ini akan berdampak jangka panjang terhadap kesejahteraan bisnis perusahaan. Oleh sebab itu, perlu dilakukan pengukuran terhadap faktor-faktor yang dapat memberikan rekomendasi peningkatan price premium agar memiliki nilai konsumsi produk secara berkelanjutan. Tujuan: Penelitian ini bertujuan untuk menganalisis secara struktural pengaruh komunikasi dialogis yaitu responsiveness dan conversational tone terhadap social media engagement pada layanan online shopping untuk memberikan rekomendasi peningkatan price premium melalui penjabaran model konseptual PLS-SEM.Metode: Pengumpulan data dilakukan dengan menyebarkan kuesioner secara daring kepada perempuan berusia 19 hingga 30 tahun yang tinggal di pulau jawa, sudah menempuh pendidikan sederajat SMA, dan memiliki frekuensi interaksi dengan bot Shopee minimal seminggu sekali sampai sebulan sekali. Kuesioner disebarkan melalui content advertising dan media sosial. Model penelitian diuji melalui data yang terkumpul dengan SmartPLS 4. Hasil: Hasil dalam penelitian ini adalah price premium dipengaruhi variabel mediasi purchase intention sepenuhnya secara positif dan signifikan oleh customer social media engagement. Customer social media engagement mempengaruhi purchase intention sebesar β=0.401 dan purchase intention mempengaruhi price premium sebesar β=0.590. Responsiveness memiliki hubungan yang sangat erat dengan customer satisfaction. Ini menunjukkan bahwa ketika penjual toko di Shopee memanfaatkan bot dalam menanggapi pertanyaan dan aduan pembeli, interaksi yang dibuat dengan pembeli akan semakin responsif dan kepuasan pembeli akan semakin meningkat. Begitu pula purchase intention dengan price premium, semakin berjalannya waktu intensi terhadap price premium akan terjaga ketika tidak ada keraguan yang dirasakan pengguna saat membeli produk di layanan online shopping yang sama. Manfaat: Manfaat penelitian Tugas Akhir ini adalah implementasi model konseptual SEM penelitian sebelumnya kepada kasus spesifik di populasi yang berbeda dan mendapatkan analisis dari hubungan setiap faktor yang mampu memberikan rekomendasi peningkatan price premium, khususnya menjaga stabilitas pembelian produk di masa depan.
=================================================
Context: Bots in online shopping services function as a substitute for service agents or vanguards whose job is to talk to users before connecting to sellers or chatbot service agents. User satisfaction with the chatbot agent's responsiveness and conversational tone in responding to complaints submitted to users influences social media engagement. Users will engage well in social media if they are satisfied with the interaction of online shopping chatbot services. Problem: The problem that is currently being experienced is that there is interaction between online shopping service agent chatbots and users who can lower the price premium. The decrease in price premium can be seen from the negative social media engagement of users, thereby reducing the perceived purchase intention of users. This interaction will have a long-term impact on the company's business prosperity.
Objectives: This study aims to structurally analyze the effect of dialogic communication on social media engagement in online shopping services to provide recommendations for increasing price premiums through elaboration of conceptual models. Methods: Data collection was carried out by sending questionnaires online to women aged 19 to 30 years who live in Java, have completed high school or equivalent education, and have a frequency of interaction with Shopee bots at least once a week to a month. very. Questionnaires were distributed through social media platforms such as Instagram, Line and WhatsApp. In testing, SmartPLS 4 is used to test the SEM-PLS model. Result: The results in this study are that the price premium is positively and significantly moderated by customer social media engagement. Customer social media engagement affect purchase intention of β=0.401, while purchase intention affect price premium of β=0.590. Responsiveness has a very close relationship with customer satisfaction. This shows that when shop sellers at Shopee utilize bots in responding to buyer questions and complaints, interactions made with buyers will be more responsive and buyer satisfaction will increase. Likewise, purchase intention with a price premium, over time the intention to price premium will be maintained when there are no doubts that users feel when buying products at the same online shopping service. Benefits: This Final Project research is needed in order to be able to provide recommendations to companies regarding the company's long-term business welfare in maintaining the stability of product purchases in the future.

Item Type: Thesis (Other)
Uncontrolled Keywords: Bot, Customer Satisfaction, Customer Social Media Engagement, Dialogic Chatbot Communication, Online Shopping Chatbot Service, Price Premium, Purchase Intention.
Subjects: H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
H Social Sciences > HB Economic Theory > HB801 Consumer behavior.
H Social Sciences > HF Commerce > HF5415.5 Customer services. Customer relations
Divisions: Faculty of Information Technology > Information System > 57201-(S1) Undergraduate Thesis
Depositing User: Nesia Nesia
Date Deposited: 24 Jul 2023 02:37
Last Modified: 24 Jul 2023 02:37
URI: http://repository.its.ac.id/id/eprint/99006

Actions (login required)

View Item View Item